- **2**. [15 points]
 - a. [9 points] For each of the following sequences, defined for $n \geq 1$, state clearly whether the sequence is:
 - increasing, decreasing, or neither.
 - bounded or unbounded.
 - convergent or divergent.

No justification is needed.

(i)
$$a_n = 2 - \cos(\pi n)$$

(ii)
$$b_n = \int_1^{n^2} \frac{1}{x} dx$$

(iii)
$$c_n = 13 - \sum_{k=0}^{n} \frac{1}{(1.1)^k}$$

b. [6 points] Let $\sum_{n=1}^{\infty} d_n$ be a geometric series, with $d_2 = 16$ and $d_5 = 2$. Determine, and clearly state, whether the series converges or diverges. If the series converges, find its sum.