- **2**. [15 points]
 - **a**. [9 points] For each of the following sequences, defined for $n \ge 1$, state clearly whether the sequence is:
 - increasing, decreasing, or neither.
 - bounded or unbounded.
 - convergent or divergent.

No justification is needed.

(i) $a_n = 2 - \cos(\pi n)$

Solution: neither, bounded, divergent

(ii)
$$b_n = \int_1^{n^2} \frac{1}{x} dx$$

Solution: increasing, unbounded, divergent

(iii)
$$c_n = 13 - \sum_{k=0}^{n} \frac{1}{(1.1)^k}$$

Solution: decreasing, bounded, convergent

b. [6 points] Let $\sum_{n=1}^{\infty} d_n$ be a geometric series, with $d_2 = 16$ and $d_5 = 2$. Determine, and clearly state, whether the series converges or diverges. If the series converges, find its sum.

Solution: Since the series is geometric, we know that $16x^3 = 2$, where x is the ratio in the series. Solving this gives $x = \frac{1}{2}$. This means the first term in the series is a = 32 (since $\frac{1}{2}a = 16$). Since the common ratio is $\frac{1}{2}$, the geometric series converges. Using this a and x, the sum is 32/(1-1/2) = 64.