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3. [10 points]

a. [6 points] Determine the radius of convergence for the following power series. Show all
of your work. You do not need to find the interval of convergence.
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Solution: We will use the ratio test. For an = (−1)n 4n+1

n1/3 (x− 1)n, we have:
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= 4|x− 1|.

By the ratio test, the power series converges when 4|x− 1| < 1, i.e. |x− 1| < 1
4 , and so

the radius of convergence is 1
4 .

b. [4 points] Suppose the power series
∞
∑

n=0
Cn(x− a)n has radius of convergence 2, and that

the series converges for x = 4 and diverges for x = 6. Which of the following could be the
value of a? List all correct answers.

0 1 2 3 4 5 6

Solution: The series is centered at x = a and has radius of convergence 2. Since the
series converges at x = 4, we must have 2 ≤ a ≤ 6. Since the series diverges at x = 6,
we cannot have 4 < a < 8. From the list, the only possible values of a are 2, 3, and 4.
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