7. [8 points] Suppose F is a nonnegative function defined for all real numbers x. Below are properties of F. Circle all that apply to F based on the fact it has this property.

a. [2 points]
$$\int_{-\infty}^{\infty} F(x)dx = 1.$$

- (A) F could be a PDF.
- (B) F could be a CDF.
- (C) F is definitely not a PDF or a CDF.
- **b.** [2 points] $\lim_{x \to \infty} F(x) = 1$ and F(2) < F(1).
 - (A) F could be a PDF.
 - (B) F could be a CDF.
 - (C) F is definitely not a PDF or a CDF.
- c. [2 points] F'(x) > 0 for $x \ge 0$.
 - (A) F could be a PDF.
 - (B) F could be a CDF.
 - (C) F is definitely not a PDF or a CDF.
- **d**. [2 points] F(7) = 2.
 - (A) F could be a PDF.
 - (B) F could be a CDF.
 - (C) F is definitely not a PDF or a CDF.
- **8.** [9 points] The parts of this problem are unrelated.
 - **a.** [4 points] Let $\sum_{n=1}^{\infty} a_n$ be a geometric series with $a_3 = 54$ and $a_6 = -2$. Write a general formula for a_n :

- **b.** [5 points] Let $b_n = \frac{n}{n+1}$ and $s_n = \sum_{i=1}^n b_i$. Circle all statements which are true.
 - (A) The sequence b_n is bounded.
- (D) The sequence s_n is bounded.
- (B) The sequence b_n is monotone.
- (E) The sequence s_n is monotone.

(C) $\lim_{n\to\infty} b_n$ exists.

(F) $\lim_{n\to\infty} s_n$ exists.