1. [4 points] If you have not already done so, neatly write your 8-digit UMID number, your initials, your instructor's first and/or last name, and your section number in the spaces provided.
2. [9 points] The chain grocery store Mathmart stocks their shelves full of brain-targeted foods for their customers on a regular basis. The time (in minutes) it takes to stock the shelves after the delivery truck arrives is represented by the cumulative distribution function (cdf):

$$
R(t)= \begin{cases}0 & t<1 \\ 1-\frac{1}{t^{3}} & t \geq 1\end{cases}
$$

a. [3 points] Find a formula for $r(t)$, a probability density function (pdf) corresponding to $R(t)$.
Solution: We must have $r(t)=R^{\prime}(t)$ whenever it is defined. Using our formula for part (a), we see that a possible formula is

$$
\begin{cases}0 & t<1 \\ 3 \frac{1}{t^{4}} & t \geq 1\end{cases}
$$

where we have chosen $r(1)=3$. We could have chosen $r(1)$ to be any non-negative number since $R^{\prime}(t)$ is not defined at 1 .
b. [3 points] What is the median amount of time (in minutes) it takes to stock the shelves?

Solution: The median occurs when $R(t)=.5$. Setting

$$
\begin{aligned}
& 1-\frac{1}{t^{3}}=.5 \\
& .5=\frac{1}{t^{3}} \\
& t=2^{\frac{1}{3}} .
\end{aligned}
$$

Therefore, the median amount of time to stock the shelves in minutes is $2^{\frac{1}{3}}$ minutes.
c. [3 points] Write an integral representing the mean amount of time (in minutes) it takes to stock the shelves. Your expression should not contain r or R. Do not solve this integral.

Solution:

$$
\int_{1}^{\infty} \frac{3}{t^{3}} d t
$$

