9. [20 points] Otto would like to landscape his yard, so he contacts the company Granville's Calculate-Yourself Gardening. Granville's company provides each potential customer with a list of possible equations and improper integrals guiding the landscaping of the yard. Granville's company also offers a discount to customers that can correctly solve the integrals. Otto, strapped for cash, desperately wants to solve the equations Granville has sent him.
a. [3 points] Granville has also informed Otto that he can plant a maple tree in the back of the yard that is initially 2 meters tall. Granville estimates that the maple tree will grow at an instantaneous rate of

$$
M(t)=\frac{12 t}{e^{t}}
$$

meters per year t years after it is planted. Write an integral that gives the height of the tree t years after it is planted. Your answer should not involve the letter M.

Solution:

$$
2+\int_{0}^{t} \frac{12 s}{e^{s}} d s
$$

b. [7 points] Determine the maximum height that the maple tree will grow to.

Solution: Let us first calculate the integral in (a) using integration by parts ($u=$ $\left.12 s, d v=e^{-s} d s\right)$:

$$
\begin{aligned}
\int_{0}^{t} \frac{12 s}{e^{s}} d s & =-\left.12 s e^{-s}\right|_{0} ^{t}+12 \int_{0}^{t} e^{-s} d s \\
& =-12 t e^{-t}+12\left[-\left.e^{-s}\right|_{0} ^{t}\right] \\
& =-12 t e^{-t}-12 e^{-t}+12
\end{aligned}
$$

Since the tree is always growing, the maximum height is

$$
\begin{aligned}
2+\int_{0}^{\infty} \frac{12 t}{e^{t}} d t & =2+\lim _{t \rightarrow \infty} \int_{0}^{t} \frac{12 s}{e^{s}} d s \\
& =2+\lim _{t \rightarrow \infty} 12-12 e^{-t}-12 t e^{-t} \\
& =14-\lim _{t \rightarrow \infty} \frac{12 t}{e^{t}} \\
& { }^{\mathrm{L}} \mathrm{H} \frac{\mathrm{\infty}}{\infty} \times 14-\lim _{t \rightarrow \infty} \frac{12}{e^{t}} \\
& =14 .
\end{aligned}
$$

So, the maximum height of the tree is 12 meters.

9. (continued)

c. [10 points] Granville tells Otto that he can get a truck to come and dispense dirt into the yard for 2 hours. The instantaneous rate that the truck will dispense dirt t hours after the truck arrives is

$$
D(t)=\frac{(\sin (t))^{2}}{t^{5 / 2} \sqrt{2-t}}
$$

pounds per minute. Show that $\int_{0}^{2} D(t) d t$ converges. Justify all of your work.
Hint 1: Try splitting this into 2 integrals, one from 0 to 1, and the other from 1 to 2.
Hint 2: You may want to use the fact that $\sin t \leq t$ for $t \geq 0$.
Solution: Following the hint,

$$
\int_{0}^{2} D(t) d t=\int_{0}^{1} D(t) d t+\int_{1}^{2} D(t) d t
$$

Starting with the first integral, note that on $[0,1]$,

$$
D(t) \leq \frac{t^{2}}{t^{5 / 2}} \leq t^{-1 / 2}
$$

By the p-test $\left(p=\frac{1}{2}\right), \int_{0}^{1} \frac{1}{\sqrt{t}} d t$ converges, so by the comparison test, $\int_{0}^{1} D(t) d t$ converges.
Next, we perform a change of variables on the second integral $(w=2-t)$:

$$
\begin{aligned}
\int_{1}^{2} D(t) d t & =\lim _{b \rightarrow 2} \int_{1}^{b} D(t) d t \\
& =\lim _{b \rightarrow 2}-\int_{1}^{2-b} \frac{(\sin (2-w))^{2}}{(2-w)^{5 / 2} \sqrt{w}} d w \\
& =\int_{0}^{1} \frac{(\sin (2-w))^{2}}{(2-w)^{5 / 2} \sqrt{w}} d w
\end{aligned}
$$

On the interval $[0,1]$,

$$
\frac{(\sin (2-w))^{2}}{(2-w)^{5 / 2} \sqrt{w}} \leq \frac{1}{\sqrt{w}}
$$

By the p-test $\left(p=\frac{1}{2}\right), \int_{0}^{1} \frac{1}{\sqrt{w}} d w$ converges. So, by the comparison test, $\int_{1}^{2} D(t) d t$ converges. As both parts converge, we have verified that the integral $\int_{0}^{2} D(t) d t$ converges.

