- **2**. [8 points] Suppose that a_n, b_n , and c_n are sequences with the following properties:
 - The sequence a_n is bounded
 - The series $\sum_{n=1}^{\infty} b_n$ converges absolutely • $\frac{1}{n^2+1} \le c_n \le \frac{1}{n}$ for all $n \ge 1$

Determine whether the following statements are **always**, **sometimes**, or **never** true, and circle the appropriate answer for each part. No justification is necessary.

a. [2 points] The sequence b_n converges to 0.

Circle one:

Always So

Sometimes Never

b. [2 points]
$$\sum_{n=1}^{\infty} \frac{c_n}{n}$$
 diverges.

Circle one: Always Sometimes Never

c. [2 points] The sequence a_n converges.

Circle one:	Always	Sometimes	Never
-------------	--------	-----------	-------

d. [2 points] The series
$$\sum_{n=1}^{\infty} \frac{1}{n^3 c_n}$$
 converges.
Circle one: Always Sometimes Never