1. [11 points]
a. [7 points] Determine the radius of convergence of the following power series:

$$
\sum_{n=1}^{\infty} \frac{9^{n}(x-2)^{2 n}}{n^{2}}
$$

Be sure to show all of your work. Write your final answer in the space provided below.
Solution: We use the ratio test, with $a_{n}=\frac{9^{n}(x-2)^{2 n}}{n^{2}}$. Then:

$$
\begin{aligned}
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|} & =\frac{9^{n+1}|x-2|^{2 n+2} n^{2}}{(n+1)^{2} 9^{n}|x-2|^{2 n}} \\
& =9|x-2|^{2} \frac{n^{2}}{(n+1)^{2}} \\
& \rightarrow 9|x-2|^{2} \quad \text { as } n \rightarrow \infty .
\end{aligned}
$$

This is less than 1 exactly when $9|x-2|^{2}<1$, or in other words $|x-2|<1 / 3$. So the radius of convergence is $1 / 3$.
b. [4 points] Suppose that the power series

$$
\sum_{n=1}^{\infty} a_{n}(x-5)^{n}
$$

Answer: $\quad 1 / 3$
converges when $x=10$ and diverges when $x=-1$. At which of the following x-values must the series converge? Circle your answers. You do not need to show any work for this problem.

Solution: From the information given, the radius of convergence is at least 5 and at most 6 . Hence it definitely converges for $|x-5|<5$, but we don't know if it converges when $|x-5| \geq 5$. So it definitely converges at $x=2,5$.

