- **2**. [8 points] Suppose that a_n, b_n , and c_n are sequences with the following properties:
 - The sequence a_n is bounded
 - The series $\sum_{n=1}^{\infty} b_n$ converges absolutely • $\frac{1}{n^2+1} \le c_n \le \frac{1}{n}$ for all $n \ge 1$

Determine whether the following statements are **always**, **sometimes**, or **never** true, and circle the appropriate answer for each part. No justification is necessary.

a. [2 points] The sequence b_n converges to 0.

Circle one: Always Sometimes Never

Solution: This is always true by the nth term test for divergence.

- b. [2 points] $\sum_{n=1}^{\infty} \frac{c_n}{n}$ diverges. Circle one: Always Sometimes Never Solution: This is never true by the comparison test, with comparison series $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- c. [2 points] The sequence a_n converges.

Circle one: Always Sometimes Never Solution: This is sometimes true. For example, the sequence $a_n = 0$ for all $n \ge 1$ is bounded and converges; on the other hand, the sequence $a_n = (-1)^n$ for $n \ge 1$ is bounded and does not converge.

d. [2 points] The series
$$\sum_{n=1}^{\infty} \frac{1}{n^3 c_n}$$
 converges.

reciprocals of the inequality that c_n satisfies, we obtain

Circle one:AlwaysSometimesNeverSolution:This is sometimes true.By multiplying through by n^3 and then taking

$$\frac{1}{n^2} = \frac{n}{n^3} \le \frac{1}{n^3 c_n} \le \frac{n^2 + 1}{n^3}.$$

If $\frac{1}{n^3c_n} = \frac{1}{n^2}$, then this is an example where the corresponding series converges; on the other hand, if $\frac{1}{n^3c_n} = \frac{n^2+1}{n^3}$, this is an example where the corresponding series diverges.