2. [8 points] Suppose that a_{n}, b_{n}, and c_{n} are sequences with the following properties:

- The sequence a_{n} is bounded
- The series $\sum_{n=1}^{\infty} b_{n}$ converges absolutely
- $\frac{1}{n^{2}+1} \leq c_{n} \leq \frac{1}{n}$ for all $n \geq 1$

Determine whether the following statements are always, sometimes, or never true, and circle the appropriate answer for each part. No justification is necessary.
a. [2 points] The sequence b_{n} converges to 0 .
Circle one: Always Sometimes Never

Solution: This is always true by the nth term test for divergence.
b. [2 points] $\sum_{n=1}^{\infty} \frac{c_{n}}{n}$ diverges.

Circle one:
Always Sometimes
Never
Solution: This is never true by the comparison test, with comparison series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
c. [2 points] The sequence a_{n} converges.

Circle one:

Always
Sometimes
Never
Solution: This is sometimes true. For example, the sequence $a_{n}=0$ for all $n \geq 1$ is bounded and converges; on the other hand, the sequence $a_{n}=(-1)^{n}$ for $n \geq 1$ is bounded and does not converge.
d. [2 points] The series $\sum_{n=1}^{\infty} \frac{1}{n^{3} c_{n}}$ converges.

Circle one:

Always
Sometimes
Never
Solution: This is sometimes true. By multiplying through by n^{3} and then taking reciprocals of the inequality that c_{n} satisfies, we obtain

$$
\frac{1}{n^{2}}=\frac{n}{n^{3}} \leq \frac{1}{n^{3} c_{n}} \leq \frac{n^{2}+1}{n^{3}} .
$$

If $\frac{1}{n^{3} c_{n}}=\frac{1}{n^{2}}$, then this is an example where the corresponding series converges; on the other hand, if $\frac{1}{n^{3} c_{n}}=\frac{n^{2}+1}{n^{3}}$, this is an example where the corresponding series diverges.

