3. [15 points] Carlos and Nancy are catching a train that leaves at 4pm. They leave their apartment for the train station at 12 pm . The amount of time t (in hours) that elapses between the time they leave their apartment and the time they arrive at the train station is described by the following probability density function (pdf) $h(t)$:

$$
h(t)= \begin{cases}0 & t \leq 3 \\ a(t-3) & 3<t \leq 4 \\ \frac{1}{4} e^{4-t} & 4<t<\infty\end{cases}
$$

a. [5 points] What is the probability they arrive late for their train (i.e., what is the probability they arrive at the train station after 4 pm)? Be sure to show work for your calculations, and be sure to use proper notation.

Solution: The probability they arrive after 4 pm is given by

$$
\int_{4}^{\infty} h(t) d t .
$$

Substituting the formula given for $h(t)$ on this interval yields the improper integral

$$
\int_{4}^{\infty} \frac{1}{4} e^{4-t} d t
$$

We evaluate this:

$$
\begin{aligned}
\int_{4}^{\infty} \frac{1}{4} e^{4-t} d t & =\lim _{b \rightarrow \infty} \int_{4}^{b} \frac{1}{4} e^{4-t} d t \\
& =\left.\lim _{b \rightarrow \infty}\left(-\frac{1}{4} e^{4-t}\right)\right|_{4} ^{b} \\
& =\lim _{b \rightarrow \infty}\left(\frac{1}{4}-\frac{1}{4} e^{4-b}\right) \\
& =\frac{1}{4}
\end{aligned}
$$

So the answer is $1 / 4$.
b. [4 points] Find the value of a so that $h(t)$ is a probability density function. Be sure to show work for any calculations.

Solution: Since $h(t)$ is a pdf, its integral from $-\infty$ to ∞ evaluates to 1 . We already found $\int_{4}^{\infty} \frac{1}{4} e^{4-t} d t=1 / 4$, so

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} h(t) d t \\
& =\int_{3}^{4} a(t-3) d t+\int_{4}^{\infty} \frac{1}{4} e^{4-t} d t \\
& =\int_{3}^{4} a(t-3) d t+\frac{1}{4}
\end{aligned}
$$

We evaluate the first integral:

$$
\begin{aligned}
\int_{3}^{4} a(t-3) d t & =\left.\frac{a t^{2}}{2}\right|_{3} ^{4}-\left.3 a t\right|_{3} ^{4} \\
& =8 a-\frac{9 a}{2}-3 a \\
& =\frac{a}{2}
\end{aligned}
$$

Therefore we have

$$
\frac{a}{2}=1-\frac{1}{4}=\frac{3}{4}
$$

so $a=3 / 2$.
c. [3 points] Give a practical interpretation of the fact that $h(4.5)=0.15$.

Note that the output value has been rounded to the nearest hundredth.
Solution: The probability that Carlos and Nancy arrive between 3:59 and 4:01 (this is a time interval of 2 minutes, or $1 / 30$ hour) is approximately $\frac{1}{30} \cdot 0.15$.
d. [3 points] Write an expression involving one or more integrals that gives the mean amount of time it takes Nancy and Carlos to travel to the train station. The letter h should not appear in your answer. You do not need to evaluate any integrals for this part.
Solution: The mean is

$$
\int_{-\infty}^{\infty} t h(t) d t=\int_{3}^{4} \frac{3}{2} t(t-3) d t+\int_{4}^{\infty} \frac{1}{4} e^{4-t} d t
$$

