4. [9 points] Consider the following sequences, all defined for $n=1,2,3, \ldots$

$$
\begin{aligned}
& a_{n}=\int_{1}^{n} \frac{1}{x^{2}} d x \\
& b_{n}=1+\frac{(-1)^{n}(n+1)}{n^{2}} \\
& c_{n}=\sum_{k=1}^{n} \frac{1}{(k+1)^{0.5}}
\end{aligned}
$$

a. [3 points] Which sequences are monotone? No justification is required for this part of the problem. Circle your final answer(s) below.

Circle your answers:	a_{n}	b_{n}	c_{n}	NONE

b. [3 points] Which sequences are convergent? No justification is required for this part of the problem. Circle your final answer(s) below.
$\begin{array}{llllll}\text { Circle your answers: } & a_{n} & b_{n} & c_{n} & \text { NONE }\end{array}$
c. [3 points] Does the series $\sum_{n=1}^{\infty} a_{n}$ converge? Justify your answer.

Solution: Note that

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \int_{1}^{n} \frac{1}{x^{2}} d x=\int_{1}^{\infty} \frac{1}{x^{2}} d x .
$$

This integral converges to a nonzero number. By the nth term test for divergence, the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

