4. [9 points] Consider the following sequences, all defined for n = 1, 2, 3, ...

$$a_n = \int_1^n \frac{1}{x^2} dx$$

$$b_n = 1 + \frac{(-1)^n (n+1)}{n^2}$$

$$c_n = \sum_{k=1}^n \frac{1}{(k+1)^{0.5}}$$

a. [3 points] Which sequences are monotone? No justification is required for this part of the problem. Circle your final answer(s) below.

 a_n

Circle your answers:

 b_n NONE

b. [3 points] Which sequences are convergent? No justification is required for this part of the problem. Circle your final answer(s) below.

Circle your answers:	a_n	b_n	c_n	NONE
----------------------	-------	-------	-------	------

c. [3 points] Does the series $\sum_{n=1}^{\infty} a_n$ converge? Justify your answer.

Solution: Note that

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \int_1^n \frac{1}{x^2} \, dx = \int_1^\infty \frac{1}{x^2} \, dx$$

This integral converges to a nonzero number. By the *n*th term test for divergence, the series $\sum_{n=1}^{\infty} a_n$ diverges.