- 5. [12 points] The solid curve graphed below is part of the graph of a function f(x) which has the following properties:
 - f(x) is twice differentiable on the interval $(0, \infty)$.
 - f(2) = -1.
 - For all $x \ge 10$, $f(x) < -\frac{5}{x}$.

The dashed line is the tangent line to f(x) at x = 2, and its slope is -1.

a. [3 points] Compute $\lim_{x \to 2} \left(\frac{f(x) + 1}{\cos\left(\frac{\pi}{2}x\right) + \frac{1}{2}x} \right)$

Solution: Note that since f(x) is differentiable, hence continuous,

$$\lim_{x \to 2} f(x) + 1 = f(2) + 1 = 0.$$

Also, the limit of $\cos(\pi \cdot x/2) + x/2$ as $x \to 2$ is 0, so we apply L'Hôpital's rule:

$$\lim_{x \to 2} \frac{f(x) + 1}{\cos\left(\frac{\pi}{2}x\right) + \frac{x}{2}} \stackrel{LH}{=} \lim_{x \to 2} \frac{f'(x)}{-\frac{\pi}{2}\sin\left(\frac{\pi}{2}x\right) + \frac{1}{2}} = \frac{f'(2)}{1/2} = -2.$$

b. [3 points] Compute $\lim_{x \to \infty} x[f(2 + x^{-1}) + 1]$

Solution: Since the limit as x tends to infinity of $f(2 + x^{-1})$ is f(2) = -1, this is an indeterminate limit of the form $\infty \cdot 0$, so L'Hôpital's rule applies. We get:

$$\lim_{x \to \infty} x[f(2+x^{-1})+1] = \lim_{x \to \infty} \frac{f(2+x^{-1})+1}{x^{-1}}$$
$$\stackrel{LH}{=} \lim_{x \to \infty} \frac{-x^{-2}f'(2+x^{-1})}{-x^{-2}}$$
$$= f'(2)$$
$$= -1.$$

c. [6 points] Does the following improper integral converge or diverge? Fully justify your answer including using proper notation and showing mechanics of any tests you use.

$$\int_{1}^{\infty} (-f(x)) \, dx$$

Solution: This diverges by the comparison test. It suffices to check that $\int_{10}^{\infty} f(x) dx$ diverges. For this, we note that the inequality f(x) < -5/x implies that

$$-f(x) > \frac{5}{x},$$

since A < B implies that -A > -B. Furthermore, $\int_{10}^{\infty} \frac{5}{x} dx$ diverges by the *p*-test with p = 1. By the comparison test, $\int_{10}^{\infty} (-f(x)) dx$ diverges as well.