5. [12 points] The solid curve graphed below is part of the graph of a function $f(x)$ which has the following properties:

- $f(x)$ is twice differentiable on the interval $(0, \infty)$.
- $f(2)=-1$.
- For all $x \geq 10, f(x)<-\frac{5}{x}$.

The dashed line is the tangent line to $f(x)$ at $x=2$, and its slope is -1 .

a. $\left[3\right.$ points] Compute $\lim _{x \rightarrow 2}\left(\frac{f(x)+1}{\cos \left(\frac{\pi}{2} x\right)+\frac{1}{2} x}\right)$

Solution: Note that since $f(x)$ is differentiable, hence continuous,

$$
\lim _{x \rightarrow 2} f(x)+1=f(2)+1=0 .
$$

Also, the limit of $\cos (\pi \cdot x / 2)+x / 2$ as $x \rightarrow 2$ is 0 , so we apply L'Hôpital's rule:

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{f(x)+1}{\cos \left(\frac{\pi}{2} x\right)+\frac{x}{2}} & \stackrel{L H}{=} \lim _{x \rightarrow 2} \frac{f^{\prime}(x)}{-\frac{\pi}{2} \sin \left(\frac{\pi}{2} x\right)+\frac{1}{2}} \\
& =\frac{f^{\prime}(2)}{1 / 2} \\
& =-2 .
\end{aligned}
$$

b. [3 points] Compute $\lim _{x \rightarrow \infty} x\left[f\left(2+x^{-1}\right)+1\right]$

Solution: Since the limit as x tends to infinity of $f\left(2+x^{-1}\right)$ is $f(2)=-1$, this is an indeterminate limit of the form $\infty \cdot 0$, so L'Hôpital's rule applies. We get:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x\left[f\left(2+x^{-1}\right)+1\right] & =\lim _{x \rightarrow \infty} \frac{f\left(2+x^{-1}\right)+1}{x^{-1}} \\
& \stackrel{L H}{=} \lim _{x \rightarrow \infty} \frac{-x^{-2} f^{\prime}\left(2+x^{-1}\right)}{-x^{-2}} \\
& =f^{\prime}(2) \\
& =-1 .
\end{aligned}
$$

c. [6 points] Does the following improper integral converge or diverge? Fully justify your answer including using proper notation and showing mechanics of any tests you use.

$$
\int_{1}^{\infty}(-f(x)) d x .
$$

Solution: This diverges by the comparison test. It suffices to check that $\int_{10}^{\infty} f(x) d x$ diverges. For this, we note that the inequality $f(x)<-5 / x$ implies that

$$
-f(x)>\frac{5}{x}
$$

since $A<B$ implies that $-A>-B$. Furthermore, $\int_{10}^{\infty} \frac{5}{x} d x$ diverges by the p-test with $p=1$. By the comparison test, $\int_{10}^{\infty}(-f(x)) d x$ diverges as well.

