7. [7 points] Determine whether the following improper integral converges or diverges. Circle your final answer choice. Fully justify your answer including using proper notation and showing mechanics of any tests you use.

$$
\int_{1}^{\infty} \frac{t^{2}-\ln (t)}{t^{4}+8 t+10} d t
$$

Circle one:
Converges Diverges

Solution: The numerator is dominated by $t^{2}$, and the denominator is dominated by $t^{4}$, so the integrand has the same behavior (for large $t$ ) as $\frac{t^{2}}{t^{4}}=\frac{1}{t^{2}}$, whose integral on the interval $[1, \infty)$ converges. Therefore we expect that this improper integral converges. To show this, first note that since $\ln (t) \geq 0$ for $t \geq 1$, we have

$$
t^{2}-\ln (t) \leq t^{2}
$$

Also, since $8 t+10 \geq 0$ for $t \geq 1$, we have

$$
t^{4}+8 t+10 \geq t^{4} .
$$

Therefore

$$
\frac{t^{2}-\ln (t)}{t^{4}+8 t+10} \leq \frac{t^{2}}{t^{4}}=\frac{1}{t^{2}}
$$

Now, $\int_{1}^{\infty} \frac{1}{t^{2}} d t$ converges by the $p$-test with $p=2$. Hence, by the comparison test, our integral converges as well.
8. [5 points] Fully evaluate the following integral:

$$
\int x \ln x d x
$$

You do not need to simplify your answer.

