6. [12 points]

b.

a. [6 points] For each of the following sequences, defined for $n \ge 1$, decide whether the sequence is monotone increasing, monotone decreasing, or neither, and whether it is bounded or unbounded. Circle your answers. No justification is required.

(i)
$$a_n = \frac{\sin(n)}{n}$$

Circle all which apply:

Monotone Increasing		Monotone Decreasing	Neither
	Bounded	Unbounded	
(ii) $b_n = \int_{\frac{1}{n}}^2 \frac{1}{x^{1/2}} dx$	x		
Circle all which app	oly:		
Monotone l	Increasing	Monotone Decreasing	Neither
	Bounded	Unbounded	
(iii) $c_n = \sum_{k=1}^n \frac{1}{k}$			
Circle all which app	oly:		
Monotone 1	Increasing	Monotone Decreasing	Neither
	Bounded	Unbounded	
[6 points] For each whether they must Circle your answers	of the following sec converge, must div . No justification i	uences or series described b erge, or whether there is no s required.	elow, determine t enough information.
(i) A sequence given	n by $d_n = P(1-n)$	where $P(x)$ is a cumulative	e distribution function.
Circle one:	Converges	Diverges Not 1	Enough Information
(ii) An increasing s	equence of positive	numbers which are all small	ller than 4.
Circle one:	Converges	Diverges Not 1	Enough Information

(iii) An infinite geometric series whose 2022nd term is 102 and whose 2023rd term is -204.

Circle one: Co	nverges I	Diverges Not	t Enough 1	Information
----------------	-----------	--------------	------------	-------------