8. [12 points]
a. [7 points] Determine the radius of convergence for the following power series. Show all of your work. You do not need to find the interval of convergence.

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 n)!}{9^{n}(n!)^{2}} x^{3 n}
$$

Answer:

b. [5 points] No justification is needed for the remainder of this problem. Suppose that the following is true about the sequence C_{n} which is defined for $n \geq 0$:

- C_{n} is monotone decreasing and converges to 0 .
- $\sum_{n=0}^{\infty} C_{n}$ diverges.
- The power series $\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{n}}{6^{n}}(x-5)^{n}$ has radius of convergence 6 .

What is the center of the interval of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{n}}{6^{n}}(x-5)^{n}$?
Answer:
What are the endpoints of the interval of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{n}}{6^{n}}(x-5)^{n}$?
Answer: Left endpoint at $c=$ \qquad
Right endpoint at $d=$ \qquad
Let c and d be the left and right endpoints of the interval of convergence you found above. Which of the following could be the interval of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{n}}{6^{n}}(x-5)^{n}$? Circle all correct answers.

$$
(c, d) \quad(c, d] \quad[c, d) \quad[c, d]
$$

