9. [12 points] For the following questions, determine if the statement is ALWAYS true, SOMETIMES true, or NEVER true, and circle the corresponding answer. Justification is not required.

a. [2 points] If the series
$$\sum_{n=1}^{\infty} (-1)^n a_n$$
 diverges, then the series $\sum_{n=1}^{\infty} a_n$ also diverges

Circle one: ALWAYS SOMETIMES

b. [2 points] If b_n is a sequence of positive numbers which satisfy $\lim_{n \to \infty} \frac{1}{n^3 b_n} = 12$, then $\sum_{n=1}^{\infty} b_n$ converges.

Circle one:

ALWAYS

SOMETIMES

NEVER

NEVER

c. [2 points] If f(x) is a continuous function so that $\int_0^\infty f(x) \, dx$ converges, then $\int_{10}^\infty \left(f(x) + \frac{1}{x^5}\right) \, dx$ converges too.

Circle one:

ALWAYS

SOMETIMES

NEVER

d. [2 points] If
$$\sum_{n=0}^{\infty} d_n = \frac{1}{1-0.3}$$
, then $d_n = (0.3)^n$ for all $n \ge 0$.

Circle one: ALWAYS SOMETIMES NEVER

e. [2 points] The function given by

$$g(x) = \begin{cases} x^3, & -1 \le x \le \sqrt[4]{5}, \\ 0, & \text{otherwise}, \end{cases}$$

is a probability density function.

Circle one: ALWAYS SOMETIMES NEVER

f. [2 points] If s_n is a decreasing sequence of positive numbers which converges, then $\sum_{n=1}^{\infty} s_n$ converges too.

Circle one: ALWAYS SOMETIMES NEVE	Circle one:	ALWAYS	SOMETIMES	NEVER
-----------------------------------	-------------	--------	-----------	-------