2. [7 points] Let $f(x)$ and $g(x)$ be two continuous and differentiable functions on $[1, \infty)$. Further, suppose these functions have the following properties:

- $F(x)=\frac{g(x)}{x+\ln (x)}$ is an antiderivative of $f(x)$ for $x \geq 1$,
- $g(1)=11$,
- $\lim _{x \rightarrow \infty} g(x)=\infty$,
- $\lim _{x \rightarrow \infty} g^{\prime}(x)=21$.

Compute the value of the following improper integral if it converges. if it does not converge, use a direct computation of the integral to show its divergence. Be sure to show your full computation, and be sure to use proper notation.

$$
\int_{1}^{\infty} f(x) \mathrm{d} x
$$

Circle one:
Diverges
Converges to 10
Solution: We start by rewriting this improper integral as a limit, and then use the First Fundamental Theorem of Calculus:

$$
\begin{aligned}
\int_{1}^{\infty} f(x) \mathrm{d} x & =\lim _{b \rightarrow \infty} \int_{1}^{b} f(x) \mathrm{d} x \\
& =\lim _{b \rightarrow \infty} F(b)-F(1) \\
& =\lim _{b \rightarrow \infty} \frac{g(b)}{b+\ln (b)}-\frac{g(1)}{1+\ln (1)} \\
& =\lim _{b \rightarrow \infty} \frac{g(b)}{b+\ln (b)}-11 .
\end{aligned}
$$

As $\lim _{b \rightarrow \infty} g(b)=\lim _{b \rightarrow \infty}(b+\ln (b))=\infty$, we try to use L'Hôpital's Rule. We obtain:

$$
\begin{aligned}
\int_{1}^{\infty} f(x) \mathrm{d} x & =\lim _{b \rightarrow \infty} \frac{g^{\prime}(b)}{1+1 / b}-11 \\
& =\frac{21}{1}-11=21-11=10 .
\end{aligned}
$$

Therefore, the integral converges to 10 .

