3. [12 points] Let $p(x)$ be a probability density function (pdf) such that

$$
p(x)= \begin{cases}1 / 10, & -3 \leq x<1 \\ 3 / 5, & 1 \leq x<2 \\ 0, & \text { otherwise }\end{cases}
$$

a. [7 points] Find the cumulative distribution function $P(x)$ corresponding to $p(x)$.

Solution: The continuous function $P(x)$ should approach 0 as $x \rightarrow-\infty$, and should be an antiderivative of $p(x)$. We see that $P(x)$ is piecewise linear, and so we use point-slope form for each piece. Note that $P(-3)=0$ and that, since $\int_{-3}^{1} p(x) \mathrm{d} x=\frac{2}{5}$, we must have $P(1)=\frac{2}{5}$. We obtain:

Answer: $P(x)= \begin{cases}0, & x<-3 \\ \frac{1}{10}(x+3), & -3 \leq x<1, \\ \frac{3}{5}(x-1)+\frac{2}{5}, & 1 \leq x<2, \\ 1, & x \geq 2\end{cases}$
b. [5 points] Find the mean value of $x$. Show all your work.

Solution: The mean value is given by:

$$
\begin{aligned}
\int_{-\infty}^{\infty} x p(x) \mathrm{d} x & =\int_{-3}^{1} \frac{1}{10} x \mathrm{~d} x+\int_{1}^{2} \frac{3}{5} x \mathrm{~d} x \\
& =\left.\frac{1}{20} x^{2}\right|_{-3} ^{1}+\left.\frac{3}{10} x^{2}\right|_{1} ^{2} \\
& =\frac{1}{20}(1-9)+\frac{3}{10}(4-1) \\
& =\frac{9}{10}-\frac{4}{10}=\frac{1}{2}
\end{aligned}
$$

