7. [18 points] Determine if the following series converge absolutely, converge conditionally, or diverge. Fully justify your answer including using proper notation and showing mechanics of any tests you use.
a. [8 points] $\sum_{n=1}^{\infty} \frac{\sin (4 n)}{4^{n}}$

Circle one: Converges Absolutely Converges Conditionally Diverges

## Solution:

Note first that $\frac{\sin (4 n)}{4^{n}}$ is not always positive, so we should not try to apply the Comparison Test directly. Instead, consider the series $\sum_{n=1}^{\infty}\left|\frac{\sin (4 n)}{4^{n}}\right|$.
For $n \geq 1$, we have $\left|\frac{\sin (4 n)}{4^{n}}\right| \leq \frac{1}{4^{n}}$, and $\sum_{n=1}^{\infty} \frac{1}{4^{n}}$ converges as it is a geometric series with common ratio $\frac{1}{4}$.
Therefore, by the (Direct) Comparison Test, $\sum_{n=1}^{\infty}\left|\frac{\sin (4 n)}{4^{n}}\right|$ converges. This means that the original series $\sum_{n=1}^{\infty} \frac{\sin (4 n)}{4^{n}}$ converges absolutely.
7. (continued) Here is a reproduction of the instructions for this problem:

Determine if the following series converge absolutely, converge conditionally, or diverge. Fully justify your answer including using proper notation and showing mechanics of any tests you use.
b. $[10$ points $] \sum_{n=3}^{\infty} \frac{(-1)^{n}}{n \ln (n)}$

## Circle one: Converges Absolutely Converges Conditionally Diverges

Solution: Note that the series is alternating. Let $a_{n}=\frac{1}{n \ln (n)}$. Then for all $n$, $0<a_{n+1}<a_{n}$, and we also have $\lim _{n \rightarrow \infty} a_{n}=0$. Therefore, by the alternating series test, $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n \ln (n)}$ converges.
Now consider the series $\sum_{n=3}^{\infty}\left|\frac{(-1)^{n}}{n \ln (n)}\right|=\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$.
Let $f(x)=\frac{1}{x \ln (x)}$. Then $f(x)$ is positive and decreasing. We have:

$$
\begin{aligned}
\int_{3}^{\infty} \frac{1}{x \ln (x)} \mathrm{d} x & =\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{1}{x \ln (x)} \mathrm{d} x \\
& =\lim _{b \rightarrow \infty} \int_{3}^{b} \frac{1}{x \ln (x)} \mathrm{d} x \\
& =\lim _{b \rightarrow \infty} \int_{\ln (3)}^{\ln (b)} \frac{1}{u} \mathrm{~d} u \\
& =\left.\lim _{b \rightarrow \infty} \ln (u)\right|_{\ln (3)} ^{\ln (b)} \\
& =\lim _{b \rightarrow \infty}(\ln (\ln (b))-\ln (\ln (3)))=\infty .
\end{aligned}
$$

Therefore, $\int_{3}^{\infty} \frac{1}{x \ln (x)} \mathrm{d} x$ diverges, and so by the Integral test, $\sum_{n=3}^{\infty} \frac{1}{n \ln (n)}$ diverges too.
Therefore $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{n \ln (n)}$ converges conditionally.

