7. [18 points] Determine if the following series converge absolutely, converge conditionally, or diverge. Fully justify your answer including using proper notation and showing mechanics of any tests you use.

Converges Absolutely

a. [8 points]
$$\sum_{n=1}^{\infty} \frac{\sin(4n)}{4^n}$$

Circle one:

Converges Conditionally Diverges

Solution: Note first that $\frac{\sin(4n)}{4^n}$ is not always positive, so we should not try to apply the Comparison Test directly. Instead, consider the series $\sum_{n=1}^{\infty} \left| \frac{\sin(4n)}{4^n} \right|$. For $n \ge 1$, we have $\left| \frac{\sin(4n)}{4^n} \right| \le \frac{1}{4^n}$, and $\sum_{n=1}^{\infty} \frac{1}{4^n}$ converges as it is a geometric series with common ratio $\frac{1}{4}$. Therefore, by the (Direct) Comparison Test, $\sum_{n=1}^{\infty} \left| \frac{\sin(4n)}{4^n} \right|$ converges. This means that the original series $\sum_{n=1}^{\infty} \frac{\sin(4n)}{4^n}$ converges absolutely. 7. (continued) Here is a reproduction of the instructions for this problem:

Determine if the following series converge absolutely, converge conditionally, or diverge. Fully justify your answer including using proper notation and showing mechanics of any tests you use.

b. [10 points]
$$\sum_{n=3}^{\infty} \frac{(-1)^n}{n \ln(n)}$$

Circle one: Converges Absolutely

Converges Conditionally Diverges

Solution: Note that the series is alternating. Let $a_n = \frac{1}{n \ln(n)}$. Then for all n, $0 < a_{n+1} < a_n$, and we also have $\lim_{n \to \infty} a_n = 0$. Therefore, by the alternating series test, $\sum_{n=3}^{\infty} \frac{(-1)^n}{n \ln(n)}$ converges. Now consider the series $\sum_{n=3}^{\infty} \left| \frac{(-1)^n}{n \ln(n)} \right| = \sum_{n=3}^{\infty} \frac{1}{n \ln(n)}$. Let $f(x) = \frac{1}{x \ln(x)}$. Then f(x) is positive and decreasing. We have: $\int_3^{\infty} \frac{1}{x \ln(x)} dx = \lim_{b \to \infty} \int_3^b \frac{1}{x \ln(x)} dx$ $= \lim_{b \to \infty} \int_3^b \frac{1}{x \ln(x)} dx$ $= \lim_{b \to \infty} \int_{\ln(3)}^{\ln(b)} \frac{1}{u} du$ $= \lim_{b \to \infty} \ln(u) \Big|_{\ln(3)}^{\ln(b)}$ $= \lim_{b \to \infty} (\ln(\ln(b)) - \ln(\ln(3))) = \infty$. Therefore, $\int_3^{\infty} \frac{1}{x \ln(x)} dx$ diverges, and so by the Integral test, $\sum_{n=3}^{\infty} \frac{1}{n \ln(n)}$ diverges too. Therefore $\sum_{n=3}^{\infty} \frac{(-1)^n}{n \ln(n)}$ converges conditionally.