8. [12 points]
a. [7 points] Determine the radius of convergence for the following power series. Show all of your work. You do not need to find the interval of convergence.

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 n)!}{9^{n}(n!)^{2}} x^{3 n}
$$

Solution: We use the ratio test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| & =\lim _{n \rightarrow \infty} \frac{9^{n}}{9^{n+1}} \cdot \frac{(2 n+2)!}{(2 n)!} \cdot \frac{(n!)^{2}}{((n+1)!)^{2}} \cdot\left|\frac{x^{3 n+3}}{x^{3 n}}\right| \\
& =\lim _{n \rightarrow \infty} \frac{1}{9} \cdot \frac{(2 n+2)(2 n+1)}{(n+1)^{2}} \cdot\left|x^{3}\right| \\
& =\frac{4}{9}\left|x^{3}\right| .
\end{aligned}
$$

The ratio test tells us the power series converges when this value is smaller than 1, i.e. $\frac{4}{9}\left|x^{3}\right|<1$. Rearranging, we see that this implies $|x|<\left(\frac{9}{4}\right)^{1 / 3}$, which tells us that the radius of convergence is $\left(\frac{9}{4}\right)^{1 / 3}$.
b. [5 points] No justification is needed for the remainder of this problem. Suppose that the following is true about the sequence C_{n} which is defined for $n \geq 0$:

- C_{n} is monotone decreasing and converges to 0 .
- $\sum_{n=0}^{\infty} C_{n}$ diverges.
- The power series $\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{n}}{6^{n}}(x-5)^{n}$ has radius of convergence 6 .

What is the center of the interval of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{n}}{6^{n}}(x-5)^{n}$?

$$
\text { Answer: } \quad 5
$$

What are the endpoints of the interval of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{n}}{6^{n}}(x-5)^{n}$?
Answer: Left endpoint at $c=$
Right endpoint at $d=$ \qquad 11
Let c and d be the left and right endpoints of the interval of convergence you found above. Which of the following could be the interval of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^{n} C_{n}}{6^{n}}(x-5)^{n}$? Circle all correct answers.

$$
(c, d) \quad(c, d] \quad[c, d) \quad[c, d]
$$

