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8. [12 points]

a. [7 points] Determine the radius of convergence for the following power series. Show all
of your work. You do not need to find the interval of convergence.
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Solution: We use the ratio test:
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The ratio test tells us the power series converges when this value is smaller than 1, i.e.
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∣ < 1. Rearranging, we see that this implies |x| <

(

9

4

)1/3

, which tells us that the

radius of convergence is

(
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)1/3

.

Answer:

(

9

4

)1/3
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b. [5 points] No justification is needed for the remainder of this problem. Suppose that the
following is true about the sequence Cn which is defined for n ≥ 0:

• Cn is monotone decreasing and converges to 0.

•

∞
∑

n=0

Cn diverges.

• The power series

∞
∑

n=0

(−1)nCn

6n
(x− 5)n has radius of convergence 6.

What is the center of the interval of convergence of
∞
∑

n=0

(−1)nCn

6n
(x− 5)n?

Answer: 5

What are the endpoints of the interval of convergence of

∞
∑

n=0

(−1)nCn

6n
(x− 5)n?

Answer: Left endpoint at c = −1

Right endpoint at d = 11

Let c and d be the left and right endpoints of the interval of convergence you found above.

Which of the following could be the interval of convergence of
∞
∑

n=0

(−1)nCn

6n
(x−5)n? Circle

all correct answers.
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