- **9.** [12 points] Katydyd is on vacation from her strenuous bakery job, and is at the beach. She is building a tower out of sand, but periodically sand falls off the top of the tower. Each time sand falls off the tower it gets 25% shorter, and between times sand falls off the top of the tower Katydyd increases its height by 2 inches.
 - **a**. [5 points] Let M_n denote the height of Katydyd's tower, in inches, immediately *before* the n^{th} time sand falls off the top of it. Before the first time sand falls off the tower it has a height of 6 inches (so $M_1 = 6$). Find expressions for the values of M_2, M_3 and M_4 . You do not need to simplify your expressions.

Solution:

$$M_{1} = 6$$

$$M_{2} = 0.75M_{1} + 2 = 0.75(6) + 2$$

$$M_{3} = 0.75M_{2} + 2 = 0.75^{2}(6) + 0.75(2) + 2$$

$$M_{4} = 0.75M_{4} + 3 = 0.75^{3}(6) + 0.75^{2}(2) + 0.75(2) + 2$$
Answer: $M_{2} =$

$$0.75^{2}(6) + 0.75(2) + 2$$
Answer: $M_{3} =$

$$0.75^{2}(6) + 0.75(2) + 2$$
Answer: $M_{4} =$

$$0.75^{3}(6) + 0.75^{2}(2) + 0.75(2) + 2$$

b. [5 points] Find a closed-form expression for M_n . Closed form means your answer should not include ellipses or sigma notation, and should NOT be recursive. You do not need to simplify your expression.

Solution:

$$M_n = 0.75^{n-1}(6) + 2(0.75^{n-2} + \dots + 0.75 + 1)$$

= 0.75ⁿ⁻¹(6) + $\frac{2(1 - 0.75^{n-1})}{1 - 0.75}$

Answer:
$$M_n = \underline{\qquad \qquad 0.75^{n-1}(6) + \frac{2(1-0.75^{n-1})}{1-0.75}}$$

c. [2 points] If Katydyd were to keep doing this indefinitely, what height would her tower approach, in inches, in the long run?

Solution:

$$\lim_{n \to \infty} M_n = \lim_{n \to \infty} 0.75^{n-1}(6) + \frac{2(1 - 0.75^{n-1})}{1 - 0.75} = \frac{2}{0.25} = 8$$

Answer:

```
8
```