

2. [9 points] Let t (in minutes) denote the time Audrey waits for the *Bursley-Baits* shuttle to arrive. Observations show that the **probability density function** (pdf) of her wait time (in minutes) is of the form

$$p(t) = \begin{cases} 0, & t < 0, \\ 2\lambda te^{-\lambda t^2} & t \geq 0, \end{cases}$$

where λ is a positive constant.

Throughout this problem, show all your work, and write your answers in exact form.

a. [5 points] Suppose that Audrey's median wait time for the Bursley-Baits shuttle is 1 minute. Find the value of λ .

Answer: _____

Sometimes Audrey takes the *Northwood Express* shuttle. For the Northwood Express shuttle, Audrey's wait time (in minutes) follows a **cumulative distribution function** (cdf) of the form

$$Q(t) = \begin{cases} 0, & t < 0, \\ 1 - (\lambda t + 1)e^{-\lambda t} & t \geq 0, \end{cases}$$

where λ is the **same** as in part a.

b. [2 points] When Audrey takes the Northwood Express shuttle, what is the fraction of rides where Audrey waits for 1 minute or less for the shuttle to arrive? Your final answer should not involve λ .

Answer: _____

c. [2 points] Audrey wants to choose the shuttle that has a lower median wait time. Which one should she choose? Explain your answer.

Circle one: THE BURSLEY-BAITS SHUTTLE THE NORTHWOOD EXPRESS SHUTTLE

Explanation: