

5. [7 points] Determine whether the following improper integral converges or diverges and circle the corresponding word. **Fully justify** your answer including using **proper notation** and showing mechanics of any tests you use. You do not need to calculate the value of the integral if it converges.

$$\int_2^\infty \frac{x+1}{5x^3 + 3x^3 \sin x} dx$$

Circle one:

Converges

Diverges

Justification:

*Solution:* We use Direct Comparison Test (DCT) to show the convergence of the integral.

Note that for  $x \geq 2$ ,

$$\frac{x+1}{5x^3 + 3x^3 \sin x} \leq \frac{2x}{2x^3} = \frac{1}{x^2}$$

and that by  $p$ -test (with  $p = 2$ ),

$$\int_2^\infty \frac{1}{x^2} dx$$

converges. Therefore, by Direct Comparison Test,

$$\int_2^\infty \frac{x+1}{5x^3 + 3x^3 \sin x} dx$$

also converges.