7. (16 pts)

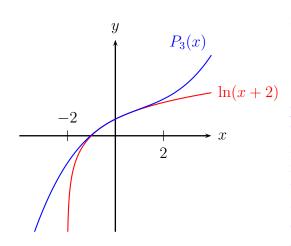
a. (8 pts) Find the Taylor series expansion for the function $\ln(2+x)$ centered at the point x = 0.

n	$f^{(n)}(x)$	$f^{(n)}(0)$
0	$\ln(2+x)$	$\ln 2$
1	$(2+x)^{-1}$	2^{-1}
2	$(-1)(2+x)^{-2}$	$-1! \cdot 2^{-2}$
3	$(-2)(-1)(2+x)^{-3}$	$2! \cdot 2^{-3}$
4	$(-3)(-2)(-1)(2+x)^{-4}$	$-3! \cdot 2^{-4}$
n	$-(n-1)\cdots(-1)(2+x)^{-n}$	$(-1)^{n-1}(n-1)! \cdot 2^{-n}$

So the Taylor series is

$$\ln(2+x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}(n-1)! \cdot 2^{-n}}{n!} x^n = \ln 2 + \sum_{n=1}^{\infty} \frac{(-1)^{n-1} \cdot 2^{-n} x^n}{n!} = \frac{\ln 2 + \frac{x}{2} - \frac{1}{2} \left(\frac{x}{2}\right)^2 + \frac{1}{3} \left(\frac{x}{2}\right)^3 - \frac{1}{4} \left(\frac{x}{2}\right)^4 + \cdots}{\ln 2}$$

b. (4 pts) Using your calculator, graphically approximate the domain of convergence of this Taylor series. Accurately sketch a graph which suggests how you got your answer.



Graphing $\ln(x+2)$ together with the third-order Taylor polynomial

$$P_3(x) = \ln(2) + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{24}$$

yields the picture on the left. It suggests that the domain of convergence is (-2, 2), since that is the region on which the polynomial approximates the function well. Adding more terms to the polynomial gives a graph which fits more closely on (-2, 2) and diverges more quickly elsewhere. So this is probably the domain of convergence.

c. (4 pts) It is claimed "One way to approximate $\ln(10)$ is to plug in 8 to the series above, using the first dozen, hundred, or even more terms. The more terms you take, the better your approximation of $\ln(10)$." Explain why this plan will (or will not) work.

That would work if 8 were in the domain of convergence of the Taylor series. But plugging 8 into the Taylor series will give a silly nonconvergent mess, and so that would not help calculate $\ln(10)$. We could, however, calculate $\ln(\pi)$ by plugging 1.14159 into the formula.