8. (10 pts) On this problem you must show your work and use exact methods. That is, calculator approximations are insufficient.

Find two values of x for which

$$
x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}-\frac{x^{14}}{7!}+\frac{x^{18}}{9!}-\frac{x^{22}}{11!}+\ldots=1
$$

Despite the high number of points and the ugly formula, there's really only one idea: The formula above is the Taylor series for $\sin (x)$, except that the powers of x are twice as high as they should be. That means that the ugly expression above is in fact $\sin \left(x^{2}\right)$. Simplifying: $\sin \left(x^{2}\right)=1$, so

$$
x^{2} \in\left\{\frac{\pi}{2}, \frac{5 \pi}{2}, \frac{9 \pi}{2}, \ldots\right\}
$$

which means

$$
x \in\left\{ \pm \sqrt{\frac{\pi}{2}}, \pm \sqrt{\frac{5 \pi}{2}}, \pm \sqrt{\frac{9 \pi}{2}}, \ldots\right\}
$$

