1. (4 points) Find the sum of the infinite series

\[2 + \left(\frac{2}{3} \right)^2 + \left(\frac{2}{3} \right)^3 + \cdots + \left(\frac{2}{3} \right)^n + \cdots \]

\[2 + \left(\frac{2}{3} \right)^2 + \left(\frac{2}{3} \right)^3 + \cdots + \left(\frac{2}{3} \right)^n + \cdots = 2 + \left(\frac{2}{3} \right)^2 \left[1 + \left(\frac{2}{3} \right)^2 + \left(\frac{2}{3} \right)^3 + \cdots + \left(\frac{2}{3} \right)^n + \cdots \right] \]

\[= 2 + \left(\frac{2}{3} \right)^2 \left[\frac{1}{1 - \frac{2}{3}} \right] = 2 + \frac{4}{3} = \frac{10}{3}. \]

2. (4 points) Does the infinite series \(\sum_{n=1}^{\infty} \frac{n^3}{n^5 + 1} \) converge? Explain why or why not.

The infinite series \(\sum_{n=1}^{\infty} \frac{1}{n^2} \) converges and the given infinite series has smaller positive terms because \(0 < \frac{n^3}{n^5 + 1} \leq \frac{n^3}{n^5} = \frac{1}{n^2} \). Therefore, the series converges by the comparison test.

3. (8 points) If the fourth degree Taylor polynomial approximating a function \(f \) near \(x = -1 \) is \(P_4(x) = 2 - 3(x + 1) - (x + 1)^3 + 4(x + 1)^4 \), then

(a) The linear approximation to \(f \) near \(x = -1 \) is \(2 - 3(x + 1) \).

(b) \(f'''(−1) = -6 \).