4. (8 points) Show that if \(\sum_{n=1}^{\infty} a_n \) converges, then \(\lim_{n \to \infty} a_n = 0 \).

Let \(S_n = a_1 + a_2 + \cdots + a_n \), so that \(S_n - S_{n-1} = a_n \). The series converges to \(S \) if and only if \(S = \lim_{n \to \infty} S_n \) exists. In this case, \(\lim_{n \to \infty} S_{n-1} = S \) as well so

\[
\lim_{n \to \infty} a_n = \lim_{n \to \infty} S_n - S_{n-1} = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0.
\]

5. (8 points) In this question we will investigate the convergence of the power series \(\sum_{n=0}^{\infty} \frac{n^2}{e^n} (x + 2)^n \).

(a) Find the radius of convergence, \(R \), of the power series. (Show your work.)

Solution. We will use the ratio test. Let \(a_n = \frac{n^2(x + 2)^n}{e^n} \) so that

\[
\frac{a_{n+1}}{a_n} = \frac{(n+1)^2(x+2)^{n+1}}{n^2(x+2)^n} = \frac{(n+1)^2}{e} \cdot \frac{1}{n^2}.
\]

Consequently,

\[
\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{(n+1)^2}{e n^2} |x + 2| = \frac{|x + 2|}{e}.
\]

By the ratio test, the series therefore converges when this limit is less than one and diverges when it is greater than one. That is, the series converges for \(|x + 2| < e \) and diverges for \(|x + 2| > e \), so the radius of convergence is \(R = e \). The series converges for \(-e < x + 2 < e \) or \(-2 - e < x < -2 + e \).

\[R = \boxed{e}. \]

(b) What is the interval of convergence of the power series?

\[-2 - e < x < -2 + e. \]