b. Find the center of mass of the nose of the submarine (i.e. the shape of the first 5 meters of our model). Note it is only necessary to set up, but not calculate, (an) integral(s).
3. (60 points) The following two questions refer to the submarine described in problem \#2.
a. The buoyancy properties of the empty submarine described in problem 1 cause the submarine to begin moving upward through the ocean water. This motion, in conjunction with the ocean water, creates a damping force that begins to slow the submarine. Assume that the damping force is proportional to the square of the velocity of the submarine, and that when the velocity is $5 \mathrm{~m} / \mathrm{s}$ the force is 100 N . For our model submarine, the velocity at t seconds can be described by $v(t)=\left(25-25 \sin \left(\frac{\pi t}{60}\right)\right)^{\frac{1}{3}}$ (in meters per second). Find the amount of work the damping force does on the submarine over the first 30 seconds of motion.
b. The sail of a submarine is a tower that houses the command and communications center, periscope(s), radar and antennae. We will additionally assume our model submarine has a sail that is a circular cylinder with radius of 2 m and a height of 3 m . Determine the total force on the sail (i.e. top and side) due to water pressure when the top of the sail is at a depth of 75 m .

