2. (b) Find the center of mass of the nose of the submarine (i.e. the shape of the first 5 meters of our model). Note it is only necessary to set up, but not calculate, (an) integral(s).

$$\bar{x} = \frac{\int_0^5 x \delta A_x(x) \, dx}{\text{mass}} = \frac{\int_0^5 x \delta \pi \left(\sqrt{5}e^{0.5}\sqrt{x}e^{-0.1x}\right)^2 \, dx}{\text{mass}} = \frac{5e\pi\delta \int_0^5 x^2e^{-0.2x} \, dx}{\text{mass}}$$

where

$$mass = 1025(2250\pi + 125\pi e) = 8339451.5 \,\mathrm{kg}.$$

By symmetry, $\bar{y} = \bar{z} = 0$. In this case, I'm assuming the z direction is perpendicular to the usual x and y axes.

- 3. (60 points) The following questions refer to the submarine described in problem #2.
 - (a) The buoyancy properties of the empty submarine described in problem 2 cause the submarine to begin moving upward through the ocean water. This motion, in conjunction with the ocean water, creates a damping force that begins to slow the submarine. Assume that the damping force is proportional to the square of the velocity of the submarine, and that when the velocity is $5 \,\mathrm{m/s}$ the force is $100 \,\mathrm{N}$. For our model submarine, the velocity at t seconds can be described by

$$v(t) = \left(25 - 25\sin\left(\frac{\pi t}{60}\right)\right)^{\frac{1}{3}}$$
 meters per second.

Find the amount of work the damping force does on the submarine over the first 30 seconds of motion.

From the problem statement, the damping force is kv^2 where k is the proportionality constant. Since the force is 100 N when the velocity is 5 m/s, we solve and find that

$$k = \frac{100 \,\mathrm{N}}{(5 \,\mathrm{m/s})^2} = 4 \,\mathrm{kg/m}.$$

The distance travelled from time t to time $t + \Delta t$ is approximately $v(t)\Delta t$. Thus the work done over that slice of time is

Force · Distance =
$$(kv^2)(v\Delta t) = kv^3\Delta t = 4\left(25 - 25\sin\left(\frac{\pi t}{60}\right)\right)\Delta t$$

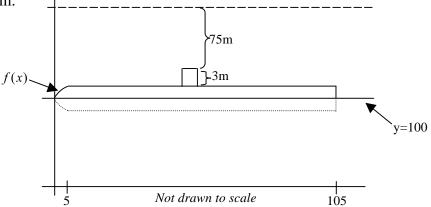
which means the total work is

$$\int_0^{30} 4\left(25 - 25\sin\left(\frac{\pi t}{60}\right)\right) dt = 100 \int_0^{30} \left(1 - \sin\left(\frac{\pi t}{60}\right)\right) dt = 100 \left[t + \frac{60}{\pi}\cos\left(\frac{\pi t}{60}\right)\right]_0^{30}$$

$$= 100 \left[\left(30 + \frac{60}{\pi}\cos\frac{\pi}{2}\right) - \left(0 + \frac{60}{\pi}\cos0\right)\right]$$

$$= 100(30 - 60/\pi) \approx \boxed{1090.14 \text{ Joules}}.$$

b. The *sail* of a submarine is a tower that houses the command and communications center, periscope(s), radar and antennae. We will additionally assume our model submarine has a sail that is a circular cylinder with radius of 2m and a height of 3m. Determine the total force on the sail (i.e. top and side) due to water pressure when the top of the sail is at a depth of 75m.



Pressure= mass density x acceleration due to gravity x depth.

Force=pressure x area.

So Force= mass density x acceleration due to gravity x depth x area.

Force on the side of the sail.

We will slice the sail vertically, with h = 0 located at the bottom of the sail. We also assume that up is in the positive direction.

This yields circular slices. So $Force_{slice} = 1025 \cdot 9.8 \cdot (78 - h) \cdot (2\pi \cdot 2\Delta h)$, where $(2\pi \cdot 2\Delta h)$ is the area of a circular strip of radius 2 and height Δh . The total force is found by adding up the force on each slice and taking the limit as $\Delta h \to 0$. Symbolically, this is

$$\lim_{\Delta h \to 0} \sum 1025 \cdot 9.8 \cdot (78 - h) \cdot (2\pi \cdot 2\Delta h) = 1025 \cdot 9.8 \cdot 4\pi \int_{0}^{3} (78 - h) dh$$

Finding anti-derivatives yields $1025 \cdot 9.8 \cdot 4\pi \left[78h - \frac{h^2}{2} \right]_0^3 = 40,180$

 $40,180\pi \cdot 229.5 = 9,221,310\pi = 28,969,599.752$ Units are Newtons.

Force on the top. Depth is 75m and area is $\pi(2)^2$. So force on top is $1025 \cdot 9.8 \cdot 75 \cdot 4\pi = 3{,}013{,}500\pi = 9{,}467{,}189.462N$.

The total is $12,234,810\pi = 38,436,789.21N$