6. (48 points) Given $\sum_{n=1}^{\infty} a_{n}=0.72, b_{n}=n^{2}, c_{n}=(n+1)^{3}$ determine whether or not the following statements are is True or False. To receive full credit, you must justify your decision with a calculation, a sentence or two, or a relevant picture that illustrates your thinking.
a. $\lim _{n \rightarrow \infty} a_{n}=0.72$. FALSE. Individual terms of a sequence must approach zero in order for the series to converge.
b. $\quad a_{n+1}<a_{n}$ for all n. FALSE. The sequence $a_{1}=0, a_{2}=.72, a_{3}=0, a_{4}=0, a_{5}=0$, etc. has sum $\sum_{n=1}^{\infty} a_{n}=0.72$. But $a_{n+1}<a_{n}$ does not hold for all n.
c. $\lim _{n \rightarrow \infty} s_{n}=0.72$ where $s_{n}=a_{1}+a_{2}+\ldots+a_{n}$ TRUE. This is the definition of convergence of a series.
d. $\lim _{n \rightarrow \infty} \frac{b_{n}}{c_{n}}$ converges. TRUE. $\lim _{n \rightarrow \infty} \frac{b_{n}}{c_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{3}}=0$ since the denominator has a polynomial with larger degree than the polynomial in the numerator.
e. $\sum_{n=1}^{\infty} \frac{b_{n}}{c_{n}}$ converges. FALSE. $\sum_{n=1}^{\infty} \frac{n^{2}}{(n+1)^{3}}>\sum_{n=1}^{\infty} \frac{n^{2}}{(n)^{3}}=\sum_{n=1}^{\infty} \frac{1}{n}$. But $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges $(p=1)$ and by comparison test so must $\sum_{n=1}^{\infty} \frac{b_{n}}{c_{n}}$.
f. $\sum_{n=1}^{\infty}(-1)^{n} \frac{b_{n}}{c_{n}}$ converges. TRUE. This is an alternating series. $\lim _{n \rightarrow \infty} \frac{b_{n}}{c_{n}}=\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{3}}=0$ and $\frac{n^{2}}{(n+1)^{3}}$ decreases to zero as n increases. So by alternating series test, the series converges.
