- **9.** [14 points] An ice cube melts at a rate proportional to its surface area. Let V(t) denote the volume (in cm³) of the ice cube, and let x(t) denote the length (in cm) of a side of the ice cube t seconds after it begins to melt.
 - **a.** [4 points] Write a differential equation for V(t), the ice cube's volume t seconds after it started melting. Your differential equation may contain V, t and an unknown constant k.

b. [4 points] The ice cube's initial volume is $V_0 > 0$. Solve the differential equation you found in part (a), finding V in terms of t, k, and V_0 .

c. [6 points] Graph the volume of the ice cube versus time given $V(0) = V_0$. Be sure to label your axes and any important features of your graph, including the time at which the ice cube has completely melted.