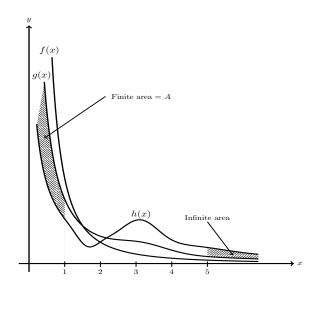
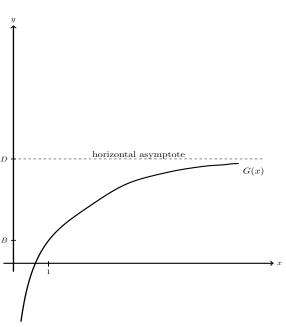

8. [15 points] Graphs of f, g and h are below. Each function is positive, is continuous on $(0, \infty)$, has a horizontal asymptote at y = 0 and has a vertical asymptote at x = 0. The area between g(x) and h(x) on the interval (0,1] is a finite number A, and the area between g(x) and h(x) on the interval $[5,\infty)$ is infinite. On the right is a graph of an antiderivative G(x) of g(x). It also has a vertical asymptote at x = 0.

Use the information in these graphs to determine whether the following three improper integrals **converge**, **diverge**, or whether there is **insufficient information to tell**. You may assume that f, g and h have no intersection points other than those shown in the graph. **Justify all your answers**.




a. [3 points]
$$\int_{1}^{\infty} h(x)dx$$

b. [4 points]
$$\int_0^1 g(x)dx$$

(problem 8 continued)

These graphs are the same as those found on the previous page.

c. [3 points]
$$\int_0^1 h(x)dx$$

d. [5 points] If $f(x) = 1/x^p$, what are all the possible values of p? **Justify your answer**.