- **1**. [14 points] Indicate if each of the following statements are true or false by circling the correct answer. **Justify your answers.**
 - **a.** [2 points] The function $z(t) = \sin(at) + at$ is a solution to the differential equation $z'' + a^2 z = a^3 t$.

True False

Solution:
$$z' = a\cos(at) + a$$
 $z'' = -a^2\sin(at)$
 $z'' + a^2z = a^2\sin(at) + a^2(\sin(at) + at) = a^3t.$

b. [3 points] The motion of a particle is given by the parametric curve x = x(t), y = y(t) for $0 \le t \le 3$ shown below. The arrows indicate the direction of the motion of the particle along the path. If the curve passes only twice through the origin, x(1) = x(2) = 0 and y(1) = y(2) = 0 then $\frac{\frac{d}{dt} \left(\frac{dy}{dt}}{\frac{dx}{dt}}\right)}{\frac{dx}{dt}} > 0$ for t = 1.

True False

Solution: The first time that the curve passes through the origin at t = 1, the curve has negative concavity.

c. [3 points] Euler's method yields an overestimate for the solutions to the differential equation $\frac{dy}{dx} = 4x^3 + 2x + 1$.

True False

Solution: False, $y'' = 12x^2 + 2 > 0$ then Euler method is an underestimate since y is concave up.

d. [3 points] The graph of x = x(t) and y = y(t) for $0 \le t \le 2$ is given below. If y'(1) = 0, then it must be the case that (x(1), y(1)) = (0, 0).

True False

True

Solution: False. The particle can stop at any point at time t = 1 in the parabola. Then y'(1) = 0 and x'(1) = 0 without necessarily be the case that (x(1), y(1)) = (0, 0).

e. [3 points] If $\int_0^2 f(x) dx$ is an improper integral, then $\int_0^1 f(x) dx$ must also be an improper integral.

False Solution: False. If $f(x) = \frac{1}{2-x}$ then $\int_0^2 f(x) dx$ is an improper integral, but $\int_0^1 f(x) dx$ is not an improper integral.