3. [14 points] A farmer notices that a population of grasshoppers is growing at undesirable levels in his crop. He decides to hire the services of a pest control company. They offer the farmer a pesticide capable of eliminating the grasshoppers at a rate of 1 thousand grasshoppers per week. In the absence of pesticides, it is estimated that the grasshopper population grows at a rate of 20 percent every week. Let \(P(t) \) be the number of grasshoppers (in thousands) \(t \) weeks after the pesticide is applied to the crop. Then \(P(t) \) satisfies

\[
\frac{dP}{dt} = \frac{P}{5} - 1.
\]

Suppose there are \(P_0 \) thousand grasshoppers in the crop at the time the pesticide is applied in the crop.

a. [8 points] Find a formula for \(P(t) \) in terms of \(t \) and \(P_0 \).

Solution:

\[
\begin{align*}
\frac{dP}{dt} &= \frac{P}{5} - 1, \\
\frac{dP}{dt} &= \frac{1}{5}(P - 5) \\
\frac{dP}{P - 5} &= \frac{1}{5}dt \\
\ln|P - 5| &= \frac{1}{5}t + C \\
P - 5 &= Be^{\frac{1}{5}t} \\
P(0) = P_0 &= 5 + B \\
B &= P_0 - 5. \\
P(t) &= 5 + (P_0 - 5)e^{\frac{1}{5}t}.
\end{align*}
\]

b. [3 points] Does the differential equation have any equilibrium solutions? List each equilibrium solution and determine whether it is stable or unstable. **Justify your answer.**

Solution: Equilibrium solutions: \(P(t) = 5 \). The equilibrium is unstable since for \(P_0 > 5 \) \(P(t) \) increases and for \(P_0 < 5 \) \(P(t) \) decreases.

c. [3 points] Does the effectiveness of the pesticide depend on \(P_0 \)? That is, is the pesticide guaranteed to eliminate the grasshopper population regardless of the value of \(P_0 \), or are there some values of \(P_0 \) for which the grasshoppers will survive? If so, determine these values of \(P_0 \).

Solution: The pesticide is effective if \(P_0 < 5 \) and ineffective if \(P_0 \geq 5 \).