8. [15 points] Graphs of f, g and h are below. Each function is positive, is continuous on $(0, \infty)$, has a horizontal asymptote at $y=0$ and has a vertical asymptote at $x=0$. The area between $g(x)$ and $h(x)$ on the interval $(0,1]$ is a finite number A, and the area between $g(x)$ and $h(x)$ on the interval $[5, \infty)$ is infinite. On the right is a graph of an antiderivative $G(x)$ of $g(x)$. It also has a vertical asymptote at $x=0$.
Use the information in these graphs to determine whether the following three improper integrals converge, diverge, or whether there is insufficient information to tell. You may assume that f, g and h have no intersection points other than those shown in the graph. Justify all your answers.

a. [3 points] $\int_{1}^{\infty} h(x) d x$

Solution: Diverges

$$
\int_{1}^{\infty} h(x) d x=\int_{1}^{5} h(x) d x+\int_{5}^{\infty} h(x) d x=\text { finite integral }+ \text { divergent integral }
$$

b. [4 points] $\int_{0}^{1} g(x) d x$

Solution: Diverges

$$
\int_{0}^{1} g(x) d x=\lim _{b \rightarrow 0^{+}} \int_{b}^{1} g(x) d x=\left.\lim _{b \rightarrow 0^{+}} G(x)\right|_{b} ^{1}=\lim _{b \rightarrow 0^{+}} G(1)-G(b)=\infty \text { Diverges }
$$

(problem 8 continued)

These graphs are the same as those found on the previous page.

c. [3 points] $\int_{0}^{1} h(x) d x$

Solution: Diverges since

$$
\int_{0}^{1} h(x) d x=\int_{0}^{1} g(x) d x-\int_{0}^{1}(g(x)-h(x)) d x=\text { divergent integral+ finite integral }
$$

d. [5 points] If $f(x)=1 / x^{p}$, what are all the possible values of p ? Justify your answer.

Solution:

$$
\begin{aligned}
\int_{1}^{\infty} g(x) d x & =\lim _{b \rightarrow \infty} \int_{1}^{b} g(x) d x \\
& =\lim _{b \rightarrow \infty} G(b)-G(1)=D-B \text { converges } \\
\int_{3}^{\infty} f(x) d x & <\int_{3}^{\infty} g(x) d x \text { convergent integral }
\end{aligned}
$$

Hence $p>1$.

