- **1**. [12 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
 - **a**. [2 points] Consider the parametric equation given by $x = a(1+t^2)$ and $y = 1-t^3$, where a > 0. Then the curve is concave up at the point (x, y) = (2a, 0).

True False

b. [2 points] Let f(x) be a continuous function satisfying $\lim_{x\to\infty} f(x) = 0$. Then

$$\lim_{b \to \infty} \int_b^\infty f(x) dx = 0.$$

True	False
LIUC	I and

c. [2 points] The point P whose polar coordinates $(r, \theta) = (1, \frac{\pi}{6})$ also has coordinates $(r, \theta) = (-1, \frac{7\pi}{6})$.

True False

d. [2 points]
$$\int_0^2 \ln(1+t) dt$$
 is an improper integral.
True False

e. [2 points] All the solutions y(t) of the differential equation $\frac{dy}{dt} = t^3$ are concave up. True False

f. [2 points] The length of the parametric curve given by $x = \cos t$ and $y = \cos t + 1$ is $2\sqrt{2}$.

True False