1. [12 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
a. [2 points] Consider the parametric equation given by $x=a\left(1+t^{2}\right)$ and $y=1-t^{3}$, where $a>0$. Then the curve is concave up at the point $(x, y)=(2 a, 0)$.

True False
b. [2 points] Let $f(x)$ be a continuous function satisfying $\lim _{x \rightarrow \infty} f(x)=0$. Then

$$
\lim _{b \rightarrow \infty} \int_{b}^{\infty} f(x) d x=0
$$

True
False
c. [2 points] The point P whose polar coordinates $(r, \theta)=\left(1, \frac{\pi}{6}\right)$ also has coordinates $(r, \theta)=\left(-1, \frac{7 \pi}{6}\right)$.

True
False
d. [2 points] $\int_{0}^{2} \ln (1+t) d t$ is an improper integral.

True False
e. [2 points] All the solutions $y(t)$ of the differential equation $\frac{d y}{d t}=t^{3}$ are concave up.

True
False
f. [2 points] The length of the parametric curve given by $x=\cos t$ and $y=\cos t+1$ is $2 \sqrt{2}$.

False

