1. [12 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
a. [2 points] Consider the parametric equation given by $x=a\left(1+t^{2}\right)$ and $y=1-t^{3}$, where $a>0$. Then the curve is concave up at the point $(x, y)=(2 a, 0)$.

> True

False
Solution: For $t \neq 0$,

$$
\frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}\left(\frac{y^{\prime}(t)}{x^{\prime}(t)}\right)}{x^{\prime}(t)}=\frac{\frac{d}{d t}\left(\frac{-3 t^{2}}{2 a t}\right)}{2 a t}=\frac{\frac{d}{d t}\left(\frac{-3 t^{2}}{2 a t}\right)}{2 a t}=\frac{\frac{-3}{2 a}}{2 a t}=\frac{-3}{4 a^{2} t}
$$

Since $(x(1), y(1))=(2 a, 0)$, then $\left.\frac{d^{2} y}{d x^{2}}\right|_{t=1}=\frac{-3}{4 a^{2}}<0$ at that point. Hence the curve is concave down at $(2 a, 0)$.
b. [2 points] Let $f(x)$ be a continuous function satisfying $\lim _{x \rightarrow \infty} f(x)=0$. Then

$$
\lim _{b \rightarrow \infty} \int_{b}^{\infty} f(x) d x=0
$$

Solution: If $\int_{0}^{\infty} f(x) d x$ diverges, then for any $b>0, \int_{b}^{\infty} f(x) d x$ diverges. Then $\lim _{b \rightarrow \infty} \int_{b}^{\infty} f(x) d x \neq 0$.
c. [2 points] The point P whose polar coordinates $(r, \theta)=\left(1, \frac{\pi}{6}\right)$ also has coordinates $(r, \theta)=\left(-1, \frac{7 \pi}{6}\right)$.
True False

Solution:
d. [2 points] $\int_{0}^{2} \ln (1+t) d t$ is an improper integral.

True
False
Solution: The function $\ln (1+t)$ is continuous on $[0,2]$.
e. [2 points] All the solutions $y(t)$ of the differential equation $\frac{d y}{d t}=t^{3}$ are concave up.

$$
\begin{array}{|l|}
\hline \text { True } \\
\hline
\end{array}
$$

False
Solution: The solution $y(t)$ satisfies $\frac{d^{2} y}{d t^{2}}=3 t^{2} \geq 0$ hence concave up.
f. [2 points] The length of the parametric curve given by $x=\cos t$ and $y=\cos t+1$ is $2 \sqrt{2}$.

Solution: The length of the curve is L

$$
\begin{aligned}
L & =\int_{0}^{\pi} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{0}^{\pi} \sqrt{(-\sin t)^{2}+(-\sin t)^{2}} d t=\sqrt{2} \int_{0}^{\pi} \sin t d t=2 \sqrt{2}
\end{aligned}
$$

