3. [11 points] The graph of G(y) is shown below. Suppose that G'(y) = g(y). Consider the differential equation $\frac{dy}{dt} = g(y)$.

Note again that $\frac{dy}{dt} = g(y)$ and the given graph depicts G(y) not g(y).

a. [6 points] The differential equation has 3 equilibrium solutions. Find the 3 solutions and indicate whether they are stable or unstable by circling the correct answer.

Equilibrium solution 1: _____ Stable Unstable

Equilibrium solution 2: _____ Stable Unstable

Equilibrium solution 3: _____ Stable Unstable

b. [2 points] Circle the graph that could be the slope field of the above differential equation.

- c. [3 points] Suppose $y_1(t), y_2(t)$ and $y_3(t)$ are all solutions of the differential equation with different initial conditions as indicated below:
 - $y_1(t)$ solves the differential equation with initial condition y(0) = -2.
 - $y_2(t)$ solves the differential equation with initial condition y(0) = 1.5.
 - $y_3(t)$ solves the differential equation with initial condition y(0) = -2.1.

Compute the following limits:

 $\lim_{t \to \infty} y_1(t) = \underline{\qquad} \qquad \lim_{t \to \infty} y_2(t) = \underline{\qquad} \qquad \lim_{t \to \infty} y_3(t) = \underline{\qquad}$