9. [10 points] Linda is designing a pond with a flat rock at one end. The rock plus the pond are in the shape of a cardioid. Plans for her pond design are depicted below. The cardioid has equation $r = 20 + 40 \sin \theta$ where r is in feet and θ is in radians. The inner loop of the cardioid forms the shape of the rock and the outer loop forms the boundary of the pond.

- **a**. [2 points] Find all values of θ between 0 and 2π for which r = 0.
- **b**. [4 points] Write an integral or sum of integrals which give(s) the perimeter of the boundary of the pond. Note this is the perimeter of the part of the cardioid drawn with a solid line.

c. [4 points] Write an integral or sum of integrals which give(s) the area of the top of the rock. Note this is the area enclosed by the dashed part of the cardioid.