11. [10 points]

a. [5 points] Compute the improper integral $\int_0^1 \ln(x) dx$. Show your work.

Solution:

 $\int_0^1 \ln(x) \, dx = \lim_{a \to 0^+} \int_a^1 \ln(x) \, dx = \lim_{a \to 0^+} x \ln(x) |_a^1 - \int_a^1 1 \, dx = \lim_{a \to 0^+} -a \ln(a) - 1 + a.$ Using either L'hopital's rule or the fact that polynomials dominate logarithms we have $\lim_{a\to 0^+} a \ln(a) = 0$. Therefore the integral is equal to -1.

b. [5 points] Use comparison of improper integrals to determine if the improper integral $\int_{1}^{\infty} \frac{\sin(x) + 3}{x^2 + 2}$ converges or diverges. Show your work.

Solution:

We have the inequalities $\sin(x) + 3 \le 4$ and $\frac{1}{x^2+2} \le \frac{1}{x^2}$. Therefore $\int_1^\infty \frac{\sin(x)+3}{x^2+1} dx \le \int_1^\infty \frac{4}{x^2} dx = 4 \int_1^\infty \frac{1}{x^2} dx$. This integral is a *p*-integral with p = 2 > 1 so it converges. Therefore $\int_1^\infty \frac{\sin(x)+3}{x^2+2} dx$ converges by comparison.