2. [6 points] Your friend the goliath frog is going to decorate the boundary of his lily pad with a string of tiny flowers. The boundary of the lily pad is given by a portion of the curve \(r = 13 + 26 \cos(\theta) \) where \(r \) is measured in inches and \(\theta \) is measured in radians. The part of the curve that traces out the lily pad is shown below in the \(xy \)-plane.

\[
\int_{-\frac{\pi}{2}}^{\frac{\pi}{3}} \sqrt{(13 + 26 \cos(\theta))^2 + (26 \sin(\theta))^2} \, d\theta + \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \sqrt{(13 + 26 \cos(\theta))^2 + (26 \sin(\theta))^2} \, d\theta.
\]

If the goliath frog is going to decorate only the part of the boundary of the lily pad for which \(x \leq 0 \), write an expression involving integrals for the length of the string of flowers required. Do not evaluate your integral.

Solution: The length of the string of flowers is given by

\[
\int_{-\frac{\pi}{2}}^{\frac{\pi}{3}} \sqrt{(13 + 26 \cos(\theta))^2 + (26 \sin(\theta))^2} \, d\theta + \int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \sqrt{(13 + 26 \cos(\theta))^2 + (26 \sin(\theta))^2} \, d\theta.
\]

3. [4 points] We can approximate the value of \(\ln(1.5) \) by using the fact that \(y = \ln(x) \) solves the differential equation

\[
\frac{dy}{dx} = \frac{1}{x}
\]

Approximate \(\ln(1.5) \) by using Euler’s method for the differential equation above with initial condition \(y(1) = 0 \) and with \(\Delta x = 0.25 \). Fill in the table with the \(y \)-values obtained at each step.

Solution: We are given that \(y(1) = 0 \). Using Euler’s method with \(\Delta x = 0.25 \) we compute

\[
y(1.25) \approx y(1) + y'(1)\Delta x = 0 + (1)(0.25) = 0.25, \\
y(1.50) \approx y(1.25) + y'(1.25)\Delta x \approx 0.25 + (0.8)(0.25) = 0.45.
\]

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0</td>
</tr>
<tr>
<td>1.25</td>
<td>0.25</td>
</tr>
<tr>
<td>1.50</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Thus, \(\ln(1.5) \approx 0.45 \).