6. [13 points] Anderson and Glen decide to take a road trip starting from Venice Beach. They have no worries about getting anywhere quickly, as they enjoy each other's company, so they take a very inefficient route. Suppose that Venice Beach is located at $(0,0)$ and that Anderson and Glen's position (x, y) (measured in miles) t hours after leaving Venice Beach is given by a pair of parametric equations $x=f(t), y=g(t)$. A graph of $f(t)$ and a formula for $g(t)$ are given below. Note that $f(t)$ is linear on the intervals $[0,0.5],[0.5,1.5]$, and $[2.5,3]$.
$f(t)(\mathrm{mi})$

$$
g(t)=-t^{3}+5 t^{2}-3 t
$$

Note: For each of the following, your final answer should not involve the letters f and g.
a. [2 points] If their roadtrip last 3 hours, what are the $x-$ and y - coordinates of their final destination?
Solution: Note that at time $t=3$, we have $x=f(3)=-2 \quad$ and $\quad y=g(3)=9$.
So the coordinates of their final destination are $(-2,9)$.
b. [3 points] At what speed are they traveling 2 hours into their trip?

Solution: We have $\left.\frac{d x}{d t}\right|_{t=2}=f^{\prime}(2)=0 \quad$ and $\left.\quad \frac{d y}{d t}\right|_{t=2}=g^{\prime}(2)=5$.
So their speed at time $t=2$ is $\sqrt{0^{2}+5^{2}}=5$ miles per hour.
c. [4 points] Write, but do not compute, an expression involving one or more integrals that gives the distance they traveled, in miles, in the first half hour of their trip.
Solution: On the interval $(0,0.5)$, we see that $f(t)=6 t$, so on this interval, we have

$$
f^{\prime}(t)=6 \quad \text { and } \quad g^{\prime}(t)=-3 t^{2}+10 t-3 .
$$

The parametric arc length formula then implies that the distance they travelled from $t=0$ to $t=0.5$ is $\quad \int_{0}^{0.5} \sqrt{(6)^{2}+\left(-3 t^{2}+10 t-3\right)^{2}} d t$ miles.
d. [4 points] Write down a pair of parametric equations using the parameter s for the line tangent to their path at $t=2.75$ hours.
Solution: Note that

$$
f(2.75)=-1.5,\left.\quad \frac{d f}{d t}\right|_{t=2.75}=-2, \quad g(2.75)=8.765625, \quad \text { and }\left.\quad \frac{d g}{d t}\right|_{t=2.75}=1.8125
$$

There are many possible parametrizations. There is no need to have this match with the parameter t from earlier, so the answer below has the line passing through ($-1.5,8.765625$) at $s=0$.

Answer: $x(s)=-2 s-1.5 \quad$ and $y(s)=\underline{1.8125 s+8.765625}$

