8. [12 points] For each of the questions below, circle <u>all</u> of the available correct answers. Circle "NONE OF THESE" if none of the available choices are correct.

No justification is required. No credit will be awarded for unclear markings.

a. [3 points] The table below gives some values of a function g(y).

y	0	0.5	1	1.5	2	2.5	3	3.5	4	4.5	5	5.5	6
g(y)	1	2	4	6	5	1	2	3	5	4	2	1	3

Suppose y = y(x) is a function of x, and consider the differential equation y' = g(y) with initial condition y(1) = 3. Then the Euler's Method approximation of y(2) when the step size is $\Delta x = 0.5$ is

i. 3 ii. 3.5 iii. 4 iv. 4.5 v. 5 vi. 5.5 vii. 6 viii. 6.5 ix. 7 x. 7.5

xi. CANNOT BE DETERMINED FROM THE INFORMATION PROVIDED

b. [3 points]
$$\lim_{x\to\infty} \left(1+\frac{1}{3x}\right)^{4x} =$$

i. $e^{4/3}$ ii. e^{12} iii. ∞ (DNE) iv. 0
v. 1 vi. ln(12) vii. ln(400/9) viii. NONE OF THESE

- c. [3 points] Which of the following pairs of parametric equations trace out a curve that lies entirely on the right half of the unit circle centered at the origin?
 - i. $x = \cos^2(t)$ and $y = \sin^2(t)$ for $0 < t < \pi/2$
 - ii. $x = \cos(t)$ and $y = \sin(t)$ for $0 < t < 3\pi/4$

iii.
$$x = \sin(4t)$$
 and $y = \cos(4t)$ for $\pi/2 < t < \pi$

- iv. $x = \sqrt{1 t^2}$ and y = t for -1 < t < 1
- V. NONE OF THESE

XII. NONE OF THESE

d. [3 points] Which of the following expressions give the total area inside the polar curve $r = 2\sin(\theta)$?

i.
$$4\pi$$
 ii. π iii. $2\int_0^{\pi} \sin^2\theta \,d\theta$ iv. $2\int_0^{2\pi} \sin^2\theta \,d\theta$ v. NONE OF THESE