1. [5 points] Let \(a_n \) be a sequence of positive numbers such that \(\sum_{n=1}^{\infty} a_n = 4 \), and let \(S_n \) be a sequence defined by \(S_n = a_1 + a_2 + \cdots + a_n \). No justification necessary.

a. [2 points] Find the following limits. Write DNE if the limit does not exist or is \(\infty \) or \(-\infty \).

 i. \(\lim_{n \to \infty} a_n = \quad \)

 ii. \(\lim_{n \to \infty} S_n = \quad \)

b. [3 points] Circle all statements which must be true.

 i. \(a_n \) is increasing

 ii. \(a_n \) is decreasing

 iii. \(S_n \) is increasing

 iv. \(S_n \) is decreasing

 v. \(S_n \) is bounded

 vi. None of these

2. [5 points] Calculate \(\int_{0}^{\infty} \frac{2}{1 + x^2} \, dx \). Show all your work using correct notation. Evaluation of integrals must be done without a calculator.