1. [5 points] Let a_n be a sequence of positive numbers such that $\sum_{n=1}^{\infty} a_n = 4$, and let S_n be a sequence defined by $S_n = a_1 + a_2 + \cdots + a_n$. No justification necessary.
 a. [2 points] Find the following limits. Write DNE if the limit does not exist or is ∞ or $-\infty$.

 i. $\lim_{n \to \infty} a_n = \underline{}$
 ii. $\lim_{n \to \infty} S_n = \underline{}$

 b. [3 points] Circle all statements which must be true.
 i. a_n is increasing
 ii. a_n is decreasing
 iii. S_n is increasing
 iv. S_n is decreasing
 v. S_n is bounded
 vi. None of these

2. [5 points] Calculate $\int_{0}^{\infty} \frac{2}{1 + x^2} \, dx$. Show all your work using correct notation. Evaluation of integrals must be done without a calculator.