- 1. [5 points] Let a_n be a sequence of positive numbers such that $\sum_{n=1}^{\infty} a_n = 4$, and let S_n be a sequence defined by $S_n = a_1 + a_2 + \cdots + a_n$. No justification necessary. - a. [2 points] Find the following limits. Write DNE if the limit does not exist or is ∞ or $-\infty$. $$\mathbf{i.} \quad \lim_{n \to \infty} a_n = \underline{\hspace{1cm}}$$ ii. $$\lim_{n\to\infty} S_n =$$ - b. [3 points] Circle <u>all</u> statements which **must be true**. - i. a_n is increasing - iii. S_n is increasing - v. S_n is bounded - ii. a_n is decreasing - iv. S_n is decreasing - vi. None of these - 2. [5 points] Calculate $\int_0^\infty \frac{2}{1+x^2} dx$. Show all your work using correct notation. Evaluation of integrals must be done without a calculator.