10. [10 points] Suppose $Q(x)$ is the cumulative distribution function (cdf) for a variable x, such that

$$Q(x) = \begin{cases} a & \text{for } x \leq 0 \\ b - e^{-cx} & \text{for } x > 0, \end{cases}$$

and the median value of x is 2.

a. [2 points] Let $q(x)$ be the probability density function for x. Write a formula for $q(x)$, assuming $q(0) = 0$.

Answer: $q(x)$ is an antiderivative of $q(x)$, so we can differentiate $Q(x)$ to get

$$q(x) = \begin{cases} 0 & \text{for } x \leq 0 \\ ce^{-cx} & \text{for } x > 0 \end{cases}$$

b. [4 points] Set up, but do not evaluate, an expression involving one or more integrals that represents the mean value of x. Your answer may contain a, b, or c, but should not contain any function names (such as Q or q).

Answer: $\int_{0}^{\infty} cx e^{-cx} \, dx$

c. [4 points] Find the values of a, b, and c. Justify your answers, and write them in exact form. Remember that the median value of x is 2.

Solution: We know $\lim_{x \to -\infty} Q(x) = a = 0$ and $\lim_{x \to \infty} Q(x) = b = 1$. Finally, we have

$$Q(2) = 1/2$$
$$1 - e^{2c} = 1/2$$
$$e^{-2c} = 1/2$$
$$-2c = \ln(1/2)$$
$$c = -\ln(1/2)/2 = \ln(2)/2$$

Answer: $a = 0$, $b = 1$, $c = \ln(2)/2$