- 1. [5 points] Let a_n be a sequence of positive numbers such that $\sum_{n=1}^{\infty} a_n = 4$, and let S_n be a sequence defined by $S_n = a_1 + a_2 + \cdots + a_n$. No justification necessary. - a. [2 points] Find the following limits. Write DNE if the limit does not exist or is ∞ or $-\infty$. - i. $\lim_{n \to \infty} a_n = _____$ - ii. $\lim_{n\to\infty} S_n = \underline{\qquad \qquad 4}$ - b. [3 points] Circle all statements which must be true. - i. a_n is increasing - iii. S_n is increasing - v. S_n is bounded - ii. a_n is decreasing - iv. S_n is decreasing - vi. None of these 2. [5 points] Calculate $\int_0^\infty \frac{2}{1+x^2} dx$. Show all your work using correct notation. Evaluation of integrals must be done without a calculator. Solution: $$\int_0^\infty \frac{2}{1+x^2} dx = \lim_{b \to \infty} \int_0^b \frac{2}{1+x^2} dx$$ $$= \lim_{b \to \infty} 2 \arctan(x) \Big|_0^b$$ $$= \lim_{b \to \infty} 2 \arctan(b) - 2 \arctan(0)$$ $$= 2 \cdot \frac{\pi}{2} - 0$$ $$= \pi$$