- 1. [5 points] Let a_n be a sequence of positive numbers such that $\sum_{n=1}^{\infty} a_n = 4$, and let S_n be a sequence defined by $S_n = a_1 + a_2 + \cdots + a_n$. No justification necessary.
 - a. [2 points] Find the following limits. Write DNE if the limit does not exist or is ∞ or $-\infty$.

- i. $\lim_{n \to \infty} a_n = _____$
- ii. $\lim_{n\to\infty} S_n = \underline{\qquad \qquad 4}$
- b. [3 points]
 Circle all statements which must be true.
 - i. a_n is increasing
- iii. S_n is increasing
- v. S_n is bounded

- ii. a_n is decreasing
- iv. S_n is decreasing
- vi. None of these

2. [5 points] Calculate $\int_0^\infty \frac{2}{1+x^2} dx$. Show all your work using correct notation. Evaluation of integrals must be done without a calculator.

Solution:

$$\int_0^\infty \frac{2}{1+x^2} dx = \lim_{b \to \infty} \int_0^b \frac{2}{1+x^2} dx$$

$$= \lim_{b \to \infty} 2 \arctan(x) \Big|_0^b$$

$$= \lim_{b \to \infty} 2 \arctan(b) - 2 \arctan(0)$$

$$= 2 \cdot \frac{\pi}{2} - 0$$

$$= \pi$$