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6. [12 points] Determine whether the following series converge or diverge.
Fully justify your answer. Show all work and indicate any convergence tests used.
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We can see this is true by using domination arguments the numerator is dominated by
n', while vn® —n + 1 is dominated by vn® Since Y °° 2 converges by p-test (p = 2),
our original series converges by the LCT.
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Justification:

Solution:  The terms in this series are not positive, but it is also not an alternating
series. We will consider the series
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for all n > 0. The larger series » 7 e" converges by the geometric series test since the

common ratio 1/e is less than 1. (Note that there are many other ways to show that this
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series converges.) Therefore " converges by comparison. Since Y >

converges, our original series Z converges absolutely, and, specifically, must itself
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converge (this is sometimes called the absolute convergence test).
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