7. [10 points] Consider the two sequences a_n and b_n defined by

$$a_n = \frac{1}{2^n}$$
 $b_0 = 5, \ b_n = 3b_{n-1} \text{ for all } n > 1.$

Compute the following limits. If the sequence diverges, write DIVERGES. No justification necessary.

a. [2 points]
$$\lim_{n\to\infty} a_n$$

Answer:
$$\lim_{n\to\infty} a_n =$$
______0

b. [2 points]
$$\lim_{n\to\infty} \sum_{k=0}^{n} a_k$$

c. [2 points]
$$\lim_{n\to\infty} a_n b_n$$

Answer:
$$\lim_{n\to\infty} a_n b_n = \underline{\qquad \infty \text{ or DIVERGES}}$$

d. [2 points]
$$\lim_{n\to\infty} \frac{\ln(b_n)}{\ln(a_n)}$$

Answer:
$$\lim_{n\to\infty} \frac{\ln(b_n)}{\ln(a_n)} = \frac{\frac{\ln(3)}{\ln(1/2)} \approx -1.585}{\dots}$$

e. [2 points]
$$\lim_{n\to\infty} \frac{1-e^{3a_n}}{a_n}$$

Solution: Since this is a limit of the form 0/0, we solve this by applying L'Hôpital's Rule.

Answer:
$$\lim_{n \to \infty} \frac{1 - e^{3a_n}}{a_n} = \underline{\qquad \qquad -3}$$