| 4. [9 points] Michigan Atomic and Thermonuclear Headquarter (M.A.T.H.) recently discovered a new chemical element X, which is radioactive with a half-life of 1 day. Currently, the M.A.T.H. lab is scheduled to synthesize k grams of X everyday at noon. Let m_n be the mass (in grams) of X the M.A.T.H. lab has in possession at noon on the nth day of production, immediately after the new batch is produced; for example, m₁ = k. a. [2 points] Calculate m₂ and m₃. | |---| | | | | | Answer: $m_2 = $ | | | | Answer: $m_3 = $ | | b. [4 points] Find a closed form expression for m_n . | | | | | | | | | | Answer: $m_n = $ | | c . [3 points] The M.A.T.H lab plans to conduct an experiment on the element X which requires having 10 grams of X at once. At this production level, for what values of k can the experiment be carried out at some point in the future? | | | | | | | | | | Answer: |